domingo, 9 de junio de 2013

SISTEMA NERVIOSO

Sistema Nervioso

El sistema nervioso está constituido por el tejido nervioso del organismo y los elementos de soporte asociados. Desde un punto de vista estructural o anatómico, el sistema nervioso se divide en dos; el Sistema Nervioso Central (SNC) y el Sistema Nervioso Periférico (SNP). El SNC está formado por el cerebro y la medula espinal, mientras que el SNP comprende los nervios, ganglios y receptores especializados.

   Por otro lado, desde el punto de vista funcional el sistema nervioso se divide, en Sistema Nervioso Somático y Sistema Nervioso Autónomo. El sistema somático es la parte del sistema nervioso que responde o relaciona el organismo con el medio ambiente externo, en cambio el sistema autónomo está en relación con el medio interno orgánico, realizando funciones propias de regulación y adaptación internas. Ambos sistemas no actúan independientemente, sino que se hallan interrelacionados y cooperan entre sí.

   La función del sistema nervioso consiste en recibir los estímulos que le llegan tanto del medio externo como interno del organismo, organizar esta información y hacer que se produzca la respuesta adecuada.

   Los estímulos procedentes del medio externo son recibidos por los receptores situados en la piel, destinados a captar sensaciones generales como el dolor, tacto, presión y temperatura, y por los receptores que captan sensaciones especiales como el gusto, la vista, el olfato, el oído, la posición y el movimiento.

   Las señales (o impulsos) que llegan al sistema nervioso periférico, se transmiten a partir de estos receptores al sistema nervioso central, donde la información es registrada y procesada convenientemente. Una vez registradas y procesadas, las señales son enviadas desde el sistema nervioso central a los distintos órganos a fin de proporcionar las respuestas adecuadas. 

Amígdalas


Las amígdalas forman parte del sistema endocrino, el cual está formado por un conjunto de glándulas (tiroides, paratiroides, amígdalas, hipófisis, epífisis y glándula suprarenal) que sintetizan hormonas y las liberan al torrente sanguíneo. Hoy en día se sabe que el hipotálamo es el responsable del control de la secreción hormonal, y a su vez las hormonas afectan el funcionamiento del sistema nervioso, por este motivo al conjunto de los dos sistemas se les denomina sistema neuroendocrino.

  Las glándulas endocrinas controlan una gran cantidad de funciones fisiológicas del organismo como el metabolismo, la homeostasis, el crecimiento, la reproducción, el dolor, etc., pero también están involucradas en la conducta humana, concretamente en las emociones, la memoria, el aprendizaje o incluso en las patologías como la depresión, la ansiedad o la anorexia nerviosa.
Cerebelo

El cerebelo es, después del cerebro, la porción más grande del encéfalo. Ocupa la fosa craneal posterior y se localiza debajo de los lóbulos occipitales del cerebro, del que está separado por una estructura denominada tienda del cerebelo. Consta de dos hemisferios cerebelosos y una parte intermedia denominada vermis. Se une al tallo cerebral mediante tres pares de pedúnculos cerebelosos; estos pedúnculos son haces de fibras que entran y salen del cerebelo, en cuya superficie aparecen numerosos surcos superficiales próximos unos a otros.

   Un corte sagital del cerebelo muestra que en el exterior del cerebelo (en la corteza cerebelosa) se encuentra la substancia gris, y en el interior la substancia blanca. En la parte más profunda del cerebelo se encuentran los núcleos dentados. El cuarto ventrículo ocupa una localización inmediatamente anterior al cerebelo.

Aspecto microscópico

   La corteza cerebelosa se divide en una capa externa, o molecular, y una capa interna, o granulosa. Entre ambas capas aparecen unas células denominadas células de Purkinje. Aunque las células de las dos capas cerebelosas corticales son de pequeño tamaño, no por ello dejan de ser neuronas. También se halla presente la neuroglia.

Función del cerebelo

El cerebelo desempeña un papel regulador en la coordinación de la actividad muscular, el mantenimiento del tono muscular y la conservación del equilibrio. El cerebelo precisa estar informado constantemente de lo que se debe hacer para coordinar la actividad muscular de manera satisfactoria. A tal fin recibe información procedente de las diferentes partes del organismo. Por un lado, la corteza cerebral le envía una serie de fibras que posibilitan la cooperación entre ambas estructuras. Por otro lado, recibe información procedente de los músculos y articulaciones, que le señalan de modo continuo su posición. Finalmente, recibe impulsos procedentes del oído interno que le mantienen informado acerca de la posición y movimientos de la cabeza. El cerebelo precisa, pues, toda esta información para poder llevar a cabo las funciones que le son propias.
                                                 
Corteza cerebral

La corteza cerebral es la parte más voluminosa del encéfalo. Una hendidura profunda, denominada cisura longitudinal, lo divide en dos hemisferios, derecho e izquierdo.

La corteza es una fina lámina de neuronas interconectadas que forman una capa de unos milímetros de grosor y que recubre la superficie irregular de los hemisferios cerebrales. La superficie de cada hemisferio presenta un conjunto de prominencias y surcos (o cisuras) que proporcionan a la corteza una apariencia plegada, de tal forma que sólo un tercio de esta queda expuesta a la superficie.

Tres de estas cisuras sirven para delimitar ciertas áreas del cerebro. Son: 1) surco central o cisura de Rolando, 2) surco lateral o cisura de Silvio, y 3) surco parietooccipital. Las eminencias situadas entre los surcos reciben el nombre de circunvoluciones o pliegues. La circunvolución central anterior se sitúa por delante del surco central, y la circunvolución central posterior se coloca inmediatamente detrás del surco central.

Cada hemisferio se divide en cuatro grandes lóbulos: frontal, parietal, temporal y occipital. En general, los lóbulos se sitúan debajo de los huesos que llevan el mismo nombre. Así, el lóbulo frontal descansa en las profundidades del hueso frontal, el lóbulo parietal debajo del hueso parietal, el lóbulo temporal debajo del hueso temporal y el lóbulo occipital debajo de la región correspondiente a la protuberancia del occipital.

Los surcos o cisuras mencionadas anteriormente actúan como estructuras limítrofes entre algunos de los lóbulos cerebrales. El surco central se localiza entre los lóbulos frontal y parietal. El surco lateral separa el lóbulo temporal situado debajo de los lóbulos frontal y parietal situados encima. El surco parietooccipital puede visualizarse en la superficie central del cerebro.


Diencéfalo


El diencéfalo es una estructura situada en la parte interna central de los hemisferios cerebrales. Se encuentra entre los hemisferios y el tronco del encéfalo, y a través de él pasan la mayoría de fibras que se dirigen hacia la corteza cerebral.

El diencéfalo se compone de varias partes: tálamo, hipotálamo, subtálamo y epitálamo.

El tálamo está formado por dos cuerpos ovoides de 3 cm de largo y aproximadamente 1,5 cm de espesor, que se asienta en la profundidad de cada hemisferio cerebral. El tercer ventrículo separa entre sí ambos tálamos, aunque éstos permanecen unidos gracias a un puente de tejido talámico denominado masa intermedia, que se extiende entre ambos. Los tálamos son masas de substancia gris, por lo que contienen cuerpos neuronales y numerosas conexiones sinápticas. Desde un punto de vista funcional, el tálamo es una estación de relevo sensitivo. Los impulsos nerviosos hacen una escala a nivel talámico, estableciendo sinapsis antes de proseguir su recorrido hacia el córtex cerebral. El tálamo constituye también un centro sensitivo primitivo que sirve para registrar un tipo de sensación generalizada e imprecisa.

El hipotálamo se localiza, como su nombre indica, debajo del tálamo. Presenta una gran variedad de funciones, algunas de ellas bastante insólitas. Por ejemplo, produce como mínimo dos hormonas (oxitocina y vasopresina) y contiene centros que regulan la actividad de la hipófisis anterior, el sistema nervioso autónomo, la temperatura corporal y la ingesta de agua y alimentos. Además, el hipotálamo se relaciona con el estado de vigilia y la sensibilidad emocional. En animales de laboratorio, como el gato, la liberación de la influencia inhibidora que ejerce sobre el hipotálamo la corteza cerebral origina la aparición de estallidos de violencia ante la más pequeña provocación.


El subtálamo está delante del tálamo y al lado del hipotálamo, su función principal se relaciona con el movimiento corporal. Las vías neuronales que lo atraviesan van hacia el tálamo, el cerebelo y los ganglios basales.

El epitálamo se sitúa en la parte posterior del diencéfalo, al lado del mesencéfalo. Está formado por la glándula pineal o epífisi y los núcleos de la habénula. La epífisi es una glándula endocrina que segrega la hormona de la melatonina, esta secreción está relacionada con la cantidad de luz solar existente, a más luz más se segregará. la habénula tiene la función de favorecer la comunicación entre el sistema límbico y la formación reticular. 

Hipocampo


   La formación hipocampal está situada en la superficie media de del lóbulo temporal. Le llega información del córtex, y a su vez envía señales neuronales al hipotálamo y el área septal a través del fórnix.
   La principal función del hipocampo es la de la consolidación de la memoria y el aprendizaje. Una lesión en esta zona produce amnesia anterógrada, o sea de los aconecimientos ocurridos después de la lesión, afectando así a los recuerdos de hechos específicos, pero curiosamente no afecta al aprendizaje de nuevas capacidades o habilidades. Por ejemplo, una persona podría aprender a montar en bicicleta después de la lesión, pero no recordaría haber visto nunca una bicicleta.
Hipófisis

La hipófisis está situada en la base del encéfalo, unida al hipotálamo y forma parte del sistema neuroendocrino el cual está formado por un conjunto de glándulas (tiroides, paratiroides, amígdalas, hipófisis, epífisis y glándula suprarenal) que sintetizan hormonas y las liberan al torrente sanguíneo.
La hipófisis consta de dos partes que funcionan de manera distinta: la hipófisis posterior o neurohipófisis, que se encarga de almacenar y liberar las hormonas sintetizadas por el hipotálamo (oxitocina y vasopresina). Y la hipófisis anterior o adenohipófisis, que actúa como una glándula secretora por sí misma.
Medula espinal

La medula espinal es una masa cilíndrica de tejido nervioso que se extiende en dirección caudal a partir del bulbo raquídeo. La medula de un adulto mide aproximadamente 45 cm de longitud y ocupa los dos tercios superiores del conducto raquídeo. Durante las primeras etapas del desarrollo la medula espinal ocupa la casi totalidad del conducto raquídeo, pero el crecimiento rápido que experimenta en seguida la columna vertebral da lugar a la disposición que presenta el adulto. La terminación inferior de la medula recibe el nombre de cono terminal.

   La medula espinal se divide en 31 segmentos: 8 cervicales, 12 torácicos o dorsales, 5 lumbares, 5 sacros y uno coccígeo.

   Los nervios salen de la medula espinal a lo largo de toda su longitud, en número de un par por cada segmento medular. La medula presenta dos engrosamientos, el cervical y el lumbar. El engrosamiento cervical corresponde al origen de los nervios que se dirigen al miembro superior, el engrasamiento lumbar al de tos nervios que se dirigen al miembro inferior.

Función

La substancia gris de la medula espinal sirve de centro reflejo y forma parte de un centro de distribución para las vías sensitivas y motoras.

La substancia blanca actúa así de gran vía conductora de impulsos hacia el encéfalo y a partir de éste.
Núcleo estriado

El núcleo estriado está formado por: caudado, putamen y globo pálido. El núcleo estriado está en el interior de los hemisferios cerebrales, en la base de cada hemisferio y su función está relacionada con el movimiento corporal.  Este núcleo forma parte de un sistema funcional mayor llamado sistema de ganglios basales, formado por el cuerpo estriado, el subtálamo y la sustancia negra. La lesión de cualquiera de estas estructuras puede provocar alteraciones en el control de los movimientos (temblor, tics, etc.).

El caudado tiene forma de C visto lateralmente, sigue el curso del ventrículo lateral. Al conjunto del caudado y el putamen también se le denomina neoestriado, y al globo pálido paleoestriado.
Sistema límbico

   El sistema límbico está compuesto por un conjunto de estructuras cuya función está relacionada con las respuestas emocionales, el aprendizaje y la memoria. Nuestra personalidad, nuestros recuerdos y en definitiva el hecho de ser como somos, depende en gran medida del sistema límbico.

  Los componentes de este sistema son: amígdala, tálamo, hipotálamo, hipófisis, hipocampo, el área septal (compuesta por el fórnix, cuerpo calloso y fibras de asociación), la corteza orbitofrontal y la circunvolución del cíngulo.

SISTEMA CIRCULATORIO



EL SISTEMA CIRCULATORIO

Los alimentos ingresan al sistema circulatorio en el proceso de absorción; a través de éste los nutrientes se transportan a través de la sangre a todas las células de nuestro cuerpo, en conjunto con el oxígeno (02), el dióxido de carbono (CO2) y los desechos que produce la célula.
Los componentes del sistema circulatorio son : la sangre, corazón y vasos sanguíneos
                                                                                              
a. Componentes de la sangre.
La sangre humana está formada por el plasma sanguíneo, los g1óbulos rojos o eritrocitos, los glóbulos blancos o leucocitos y las plaquetas. Su temperatura es de los 36ºC, y una persona adulta tiene un promedio de unos 5 litros de sangre, lo cual corresponde al 8% del peso de su cuerpo.
El plasma sanguíneo, componente líquido. 

El plasma sanguíneo es el componente líquido de la sangre, es decir, una solución que contiene 90-92 % de agua y transporta sus elementos sólidos (glóbulos y plaquetas). Además, presenta una gran variedad de sustancias en disolución, como azúcares, proteínas, grasas, sales minerales, etc. que se pueden agrupar en tres categorías:
• Proteínas: Son albúminas, globulinas y fibrinógeno. El fibrinógeno es el responsable de la formación de coágulos, y la parte de plasma que no lo contiene se denomina suero sanguíneo.
• Sales inorgánicas: Se encuentran disueltas en forma de aniones (iones cloro, bicarbonato, fosfato y sulfato) y cationes (sodio, potasio, calcio y magnesio). Actúan como una reserva alcalina que mantiene constante el pH y regula el contenido de agua.
• Sustancias de transporte: son moléculas que proceden de la digestión (glucosa, aminoácidos) o de la respiración (nitrógeno, oxígeno), residuos del metabolismo (dióxido de carbono, urea, ácido úrico), o bien sustancias absorbidas por la piel, las mucosas, los pulmones, etc.
Los glóbulos rojos o eritrocitos.


Son células de color rojo capaces de captar gran cantidad de oxígeno. En cada milímetro cúbico de sangre existen entre 4,5 a 6 millones. Esta enorme abundancia hace que la sangre tenga un color rojo intenso. Cuando una persona padece de anemia, la cantidad de glóbulos rojos baja de los niveles normales, según la edad y sexo.
Glóbulos rojos: células «no vivas», pero imprescindibles.
Los glóbulos rojos, también denominados eritrocitos o hematíes, son células sanguíneas en forma de disco bicóncavo: un diámetro de 6-9 micras y un espesor de 1 micra, que aumenta progresivamente hacia los bordes (2,2 micras). El ser humano cuenta con 4,5 o 5 millones de eritrocitos por mm3, que constituyen el 45 % del volumen de la sangre.

Los eritrocitos se producen en la médula ósea a partir de una célula madre y mediante un proceso de eritropoyesis. Esta producción es continua porque, cada segundo, los macrófagos del bazo destruyen unos dos millones de hematíes envejecidos que hay que reemplazar.
Se puede considerar que los glóbulos rojos son células «no vivas», ya que carecen de núcleo y de mitocondrias, pero esto no les impide realizar su función: el transporte de oxígeno.
En su interior, los glóbulos rojos están formados básicamente por hemoglobina, una proteína constituida
por cuatro cadenas de aminoácidos. Cada cadena se asocia a un grupo molecular, el grupo hemo, cada uno de los cuales cuenta con un átomo de hierro, que fija una molécula de oxigeno y la trausDorta desde los pulmones hasta los tejidos.
Glóbulos blancos: los guerreros de la sangre

A diferencia de los hematíes, los glóbulos blancos o leucocitos presentan una estructura nuclear completa. Su núcleo puede ser esférico, en forma de riñón o polilobulado. Miden entre 6 y 20 micras y su número oscila entre 5.000y 10.000 por mm3 de sangre.
Órganos productores de glóbulos blancos
Existen distintos órganos productores de glóbulos blancos, repartidos por el cuerpo: la médula ósea, el bazo, el timo, los ganglios de las axilas, las amígdalas y las placas de Peyer, en la mucosa intestinal.
Su función es esencialmente defensiva frente a las infecciones, ya sea mediante la absorción y destrucción de bacterias (fagocitosis), o bien a través de procesos inmunológicos.
Dentro de los leucocitos se distinguen dos grandes grupos, los granulocitos y los agranulocitos, según presenten o no granulaciones en su citoplasma.
Los primeros presentan un núcleo con formas muy diversas y actúan por fagocitosis. Los más numerosos y activos son los neutrófilos (70% del total), además de los basófilos (1 %) y de los eosinófilos (4%). Los leucocitos sin granulaciones son los monocitos, de mayor tamaño y gran actividad fagocítica, y los linfocitos, que se dividen en pequeños (el 90%) y grandes (10% restante).
Las plaquetas.
Son fragmentos de células sin núcleo. Hay entre 250.000 y 350.000 en cada mm3 de sangre y su función es la coagulación de la sangre.
1.- Transporte de nutrientes.
La sangre transporta las sustancias alimenticias desde el intestino delgado hasta todas las células del cuerpo. Esa misión la realiza el plasma sanguíneo.
2.- Defensa frente a agentes infecciosos.
La sangre realiza una función defensiva contra los microbios y otras sustancias que pueden causar enfermedades. Esta función la realizan tos glóbulos blancos
3.- Coagulación.
La sangre es la encargada de taponar las heridas, tanto externas como internas que se producen en el cuerpo. Esta función la realizan las plaquetas que, al unirse, bloquean las heridas y coagulan la sangre que fluye por ellas.
4.- Calefacción.
La sangre es un sistema de calefacción para el cuerpo humano. Normalmente, la sangre se encuentra a una temperatura de 36º y calienta todas las zonas del cuerpo a las que llega. Cuando una zona se enfría, la sangre fluye hacia ella y se enrojece; de esta forma se consigue que las que están expuestas al frío se calienten.
c. Estructuras que forman el sistema circulatorio.   
El corazón.

Es un órgano muscular, del tamaño de un puño, situado en el tórax, entre los dos pulmones y ligeramente desplazado a la izquierda, por delante del esófago y apoyado sobre el diafragma. Tiene un volumen similar al de un puño. En su parte interna está dividido en cuatro cavidades o espacios: dos aurículas y dos ventrículos (izquierdos y derechos); entre las aurículas y los ventrículos de cada lado hay válvulas que regulan el paso de la sangre. Del corazón salen arterias y venas. Su función es impulsar la sangre a todo el cuerpo, permitiendo así que cada órgano del cuerpo reciba la cantidad de oxígeno y nutrientes que necesita. Este impulso se transmite a través de las arterias y ello nos permite contar los latidos de las arterias superficiales del cuerpo.                     
Vasos sanguíneos

Son tubos encargados de transportar la sangre; corresponden a arterias, venas y capilares.
¿Qué características presentan los siguientes vasos sanguíneos?
Arteria.
Su forma es tubular, de pared gruesa formada por diferentes capas ubicadas en todo el cuerpo. Las arterias principales salen del corazón, como la arteria aorta y la arteria pulmonar. La función principal que cumplen es la de llevar la sangre oxigenada a todo el organismo desde el corazón.


Venas. También tienen forma tubular, sus paredes son más delgadas que las de las arterias y se encuentran a lo largo y ancho de todo el cuerpo. Las venas principales son la vena cava y la vena pulmonar. La función de las venas es transportar el dióxido de carbono (C02).

Capilares.
Sus paredes son mucho más delgadas que las venas y arterias, debido a que llegan a todo nuestro cuerpo en grandes cantidades. Por ello es que cuando se nos produce una herida, sangramos. Los capilares permiten la unión entre venas y arterias.

Su función es vital, ya que a: través de ellos se produce el intercambio de nutrientes con las células: oxígeno, dióxido de carbono y desechos. En los esquemas se les representa con el color rojo a los que resultan de la ramificación de las arterias, porque transportan sangre con un alto contenido de oxígeno (02) y, de color azul, a los que formarán las venas, las cuales llevan sangre con un alto contenido de dióxido de carbono (C02).          
   
Bazo
El bazo es un órgano abdominal, de forma ovoide y color rojizo, que pesa unos 200 g. Está profusamente irrigado por vasos sanguíneos y puede modificar su volumen mediante la acumulación de sangre en su interior o pulpa esplénica. Aunque no es un órgano vital, en casos de emergencia es capaz de liberar la sangre que ha retenido, con lo que aumenta el riego sanguíneo y la oxigenación de los tejidos.
Al bazo también se le llama cementerio de los glóbulos rojos porque se encarga de eliminar cada segundo unos dos millones de glóbulos rojos envejecidos.

El bazo también interviene en la linfopoyesis o formación del tejido linfático.

d. Circulación de la sangre.
 
 La circulación sanguínea del cuerpo humano es cerrada, doble y completa: cerrada, porque no se comunica con el exterior, como en los insectos, doble, porque posee dos circuitos; y completa, porque la sangre venosa y la sangre arterial no se mezclan nunca.
 La circulación de la sangre ocurre así:
 1. La sangre recoge oxígeno en los pulmones y llega al corazón a través de las   venas.
 2. El corazón impulsa la sangre con oxígeno que llega a todos los órganos del   cuerpo a través de las arterias.
 3. La sangre con dióxido de carbono vuelve al corazón a través de las venas.
 4. El corazón impulsa la sangre con dióxido de carbono hasta los pulmones a través  de la arteria pulmonar. La sangre recoge el oxígeno y se repite el ciclo. La  circulación que realiza la sangre entre el corazón y los pulmones recibe el nombre  de circulación menor: y el recorrido que realiza la sangre entre el corazón y el resto  del  cuerpo recibe el nombre de circulación mayor.
 

CELULA ANIMAL



CÉLULA ANIMAL
Partes:
Membrana Celular: Es el limite externo de la célula formada por fosfolípido y su función es delimitar la célula y controlar lo que sale e ingresa de la célula.
Mitocondria: diminuta estructura celular de doble membrana responsable de la conversión de nutrientes en el compuesto rico en energía trifosfato de adenosina (ATP), que actúa como combustible celular. Por esta función que desempeñan, llamada respiración, se dice que las mitocondrias son el motor de la célula.  
Cromatina: complejo macromolecular formado por la asociación de ácido desoxirribonucleico o ADN y proteínas básicas, las histonas, que se encuentra en el núcleo de las células eucarióticas.
Lisosoma: Saco delimitado por una membrana que se encuentra en las células con núcleo (eucarióticas) y contiene enzimas digestivas que degradan moléculas complejas. Los lisosomas abundan en las células encargadas de combatir las enfermedades, como los leucocitos, que destruyen invasores nocivos y restos celulares.
Aparato de Golgi: Parte diferenciada del sistema de membranas en el interior celular, que se encuentra tanto en las células animales como en las vegetales.  
Citoplasma: El citoplasma comprende todo el volumen de la célula, salvo el núcleo. Engloba numerosas estructuras especializadas y orgánulos, como se describirá más adelante.
Nucleoplasma: El núcleo de las células eucarióticas es una estructura discreta que contiene los cromosomas, recipientes de la dotación genética de la célula. Está separado del resto de la célula por una membrana nuclear de doble capa y contiene un material llamado nucleoplasma. La membrana nuclear está perforada por poros que permiten el intercambio de material celular entre nucleoplasma y citoplasma.
Núcleo: El órgano más conspicuo en casi todas las células animales y vegetales es el núcleo; está rodeado de forma característica por una membrana, es esférico y mide unas 5 µm de diámetro. Dentro del núcleo, las moléculas de ADN y proteínas están organizadas en cromosomas que suelen aparecer dispuestos en pares idénticos. Los cromosomas están muy retorcidos y enmarañados y es difícil identificarlos por separado.
Nucléolo: Estructura situada dentro del núcleo celular que interviene en la formación de los ribosomas (orgánulos celulares encargados de la síntesis de proteínas). El núcleo celular contiene típicamente uno o varios nucleolos, que aparecen como zonas densas de fibras y gránulos de forma irregular. No están separados del resto del núcleo por estructuras de membrana.
13)Centriolos: Cada una de las dos estructuras de forma cilíndrica que se encuentran en el centro de un orgánulo de las células eucarióticas denominado centrosoma. Al par de centriolos se conoce con el nombre de diplosoma; éstos se disponen perpendicularmente entre sí.
Ribosoma: Corpúsculo celular que utiliza las instrucciones genéticas contenidas en el ácido ribonucleico (ARN) para enlazar secuencias específicas de aminoácidos y formar así proteínas. Los ribosomas se encuentran en todas las células y también dentro de dos estructuras celulares llamadas mitocondrias y cloroplastos. Casi todos flotan libremente en el citoplasma (el contenido celular situado fuera del núcleo), pero muchos están enlazados a redes de túbulos envueltos en membranas que ocupan toda la masa celular y constituyen el llamado retículo endoplasmático.
 
Retículos endoplasmático (RE): También retículo endoplásmico, extensa red de tubos que fabrican y transportan materiales dentro de las células con núcleo (células eucarióticas). El RE está formado por túbulos ramificados limitados por membrana y sacos aplanados que se extienden por todo el citoplasma (contenido celular externo al núcleo) y se conectan con la doble membrana que envuelve al núcleo. Hay dos tipos de RE: liso y rugoso.
RE Rugoso: La superficie externa del RE rugoso está cubierta de diminutas estructuras llamadas ribosomas, donde se produce la síntesis de proteínas. Transporta las proteínas producidas en los ribosomas hacia las regiones celulares en que sean necesarias o hacia el aparato de Golgi, desde donde se pueden exportar al exterior.
RE Liso: El RE liso desempeña varias funciones. Interviene en la síntesis de casi todos los lípidos que forman la membrana celular y las otras membranas que rodean las demás estructuras celulares, como las mitocondrias. Las células especializadas en el metabolismo de lípidos, como las hepáticas, suelen tener más RE liso.
El RE liso también interviene en la absorción y liberación de calcio para mediar en algunos tipos de actividad celular. En las células del músculo esquelético, por ejemplo, la liberación de calcio por parte del RE activa la contracción muscular.
Membrana Plasmática: La membrana plasmática de las células eucarióticas es una estructura dinámica formada por 2 capas de fosfolípidos en las que se embeben moléculas de colesterol y proteínas. Los fosfolípidos tienen una cabeza hidrófila y dos colas hidrófobas. Las dos capas de fosfolípidos se sitúan con las cabezas hacia fuera y las colas, enfrentadas, hacia dentro. Es decir, los grupos hidrófilos se dirigen hacia la fase acuosa, los de la capa exterior de la membrana hacia el líquido extracelular y los de la capa interior hacia el citoplasma.

Características de las células

Todas las células tienen unas características comunes que son:

Características estructurales

  • Individualidad: Todas las células están rodeadas de una membrana plasmática que las separa y comunica con el exterior, que controla los movimientos celulares y que mantiene el potencial eléctrico de la célula. Algunas células como las bacterias y las células vegetales poseen una pared celular que rodea a la membrana plasmática.
  • Contienen un medio hidrocálido, el citoplasma, que forma la mayor parte del volumen celular y en el que están inmersos los orgánulos celulares.
  • Autogobierno: poseen ADN, el material hereditario de los genes y que contiene las instrucciones para el funcionamiento celular.
  • ARN, que expresa la información contenida en el ADN.
  • Enzimas y otras proteínas que ponen en funcionamiento la maquinaria celular.
  • Una gran variedad de otras biomoléculas.

Características diferenciales y funcionales de las células

Las células vivas son un sistema bioquímico complejo. Las características que permiten diferenciar las células de los sistemas químicos no vivos son:
  1. Autoalimentación o nutrición. Las células toman sustancias del medio, las transforman de una forma a otra, liberan energía y eliminan productos de desecho, mediante el metabolismo.
  2. Autorreplicación o crecimiento. Las células son capaces de dirigir su propia síntesis. A consecuencia de los procesos nutricionales, una célula crece y se divide, formando dos células, en una célula idéntica a la célula original, mediante la división celular.
  3. Diferenciación. Muchas células pueden sufrir cambios de forma o función en un proceso llamado diferenciación celular. Cuando una célula se diferencia, se forman algunas sustancias o estructuras que no estaban previamente formadas y otras que lo estaban dejan de formarse. La diferenciación es a menudo parte del ciclo de vida celular en que las células forman estructuras especializadas relacionadas con la reproducción, la dispersión o la supervivencia.
  4. Señalización química. Las células responden a estímulos químicos y físicos tanto del medio externo como de su interior y, en el caso de células móviles, hacia determinados estímulos ambientales o en dirección opuesta mediante un proceso que se denomina síntesis. Además, con frecuencia las células pueden interaccionar o comunicar con otras células, generalmente por medio de señales o mensajeros químicos, como hormonas, neurotransmisores, factores de crecimiento... en seres pluricelulares en complicados procesos de comunicación celular y transducción de señales.
  5. Evolución. A diferencia de las estructuras inanimadas, los organismos unicelulares y pluricelulares evolucionan. Esto significa que hay cambios hereditarios (que ocurren a baja frecuencia en todas las células de modo regular) que pueden influir en la adaptación global de la célula o del organismo superior de modo positivo o negativo. El resultado de la evolución es la selección de aquellos organismos mejor adaptados a vivir en un medio particular. Clasificación
Existen dos tipos básicos de células: procariotas y eucariotas.

Comparación entre la célula eucariota animal y la procariota. En la célula procariota, la cápsula no siempre se presenta.
  • Las células procariotas son estructuralmente más simples que las eucariotas. Conformaron los primeros organismos del tipo unicelular que aparecieron sobre la tierra, hace unos 3.500 millones de años.
Las células procariotas tienen el material genético concentrado en la región central del citoplasma, pero sin una membrana protectora que defina un núcleo. La célula no tiene orgánulos –a excepción de ribosomas- ni estructuras especializadas. Como no poseen mitocondrias, los procariotas obtienen energía del medio mediante reacciones de glucólisis en los mesosomas o en el citosol. Están representados por los organismos del dominio Bacteria (bacterias y algas cianofíceas) y por los organismos pertenecientes al Dominio Archaea (extremófilos)
  • Las células eucariotas son más complejas que las procariotas y surgieron a partir de estas por el fenómeno de Endosimbiosis, hace unos 1.000 millones de años.
Tienen mayor tamaño y su organización es más compleja, con presencia de organelas que le permiten una notable especialización en sus funciones. El ADN está contenido en un núcleo con doble membrana atravesado por poros. Las células eucariotas están presentes en los organismos pertenecientes al Dominio Eukarya (Protistas, Hongos, Plantas y Animales)

Estructura de una célula eucariota

Véase también: Célula eucariota






Las células eucariotas están formadas por diferentes estructuras y organelas que desarrollan diversas funciones, a saber:
  • Citoplasma. Medio hidrosalino donde se llevan a cabo gran parte de las reacciones químicas de la célula.
  • Citoesqueleto. Entramado interno que da soporte estructural a la célula.
  • Nucleolo. Su función principal es la producción y ensamblaje de ribosomas y la síntesis de ARN.
  • Ribosomas. Realizan la síntesis de proteínas a partir de la información genética que llega del núcleo en forma de ARN mensajero.
  • Retículo endoplasmático rugoso (o granular). Conjunto de membranas que reciben las proteínas que producen los ribosomas adosados a sus membranas y participan en el transporte intracelular.
  • Retículo endoplasmático liso. Conjunto de membranas que realizan varios procesos metabólicos, incluyendo la síntesis de lípidos: triglicéridos, fosfolípidos y esteroides, participan en el transporte intracelular.
  • Aparato de Golgi. Sintetiza o transforma compuestos previamente sintetizados (carbohidratos, proteínas), ensambla lisosomas y participa en el embalaje y transporte intracelular y la fabricción de membrana plasmática.
  • Mitocondrias. Encargadas de la producción de energía (ATP) a partir de la respiración celular.
  • Vacuolas. Almacenan alimentos o productos de desecho y participan en la homeostasis.
  • Vesículas. Almacenan, transportan o digieren productos y residuos celulares.
  • Lisosomas. Contienen enzimas que digieren materiales de origen externo o interno que llegan a ellos.
  • Centríolos (sólo en la célula animal). Estructuras tubulares que ayudan a la separación de los cromosomas durante la división celular.
  • Cloroplastos (sólo en las células de plantas y algas). Realizan la fotosíntesis.
  • Cromoplastos (sólo en las células de plantas y algas). Sintetizan y almacenan pigmentos.
  • Pared celular (sólo en la célula vegetal, de algas, hongos y protistas). Capa exterior a la membrana citoplasmática que protege a la célula y le da rigidez.

Diferencias entre las células animales y vegetales

Célula animal
  • No tiene pared celular (membrana celulósica)
  • Presentan diversas formas de acuerdo con su función.
  • No tiene plastos
  • Puede tener vacuolas pero no son muy grandes.
  • Presenta centríolos ue son agregados de microtúbulos cilíndricos que forman los cilios y los flagelos y facilitan la división celular.
Célula vegetal
  • Presentan una pared celular compuesta principalmente de celulosa) que da mayor resistencia a la célula.
  • Disponen de plastos como cloroplastos (orgánulo capaz de realizar la fotosíntesis), cromoplastos (orgánulos que acumulan pigmentos) o leucoplastos (orgánulos que acumulan el almidón fabricado en la fotosíntesis)..
  • Poseen Vacuolas de gran tamaño que acumulan sustancias de reserva o de desecho producidas por la célula.
  • Presentan Plasmodesmos que son conexiones citoplasmáticas que permiten la circulación directa de las sustancias del citoplasma de una célula a otra.

Funciones de las células

Todas las células realizan tres funciones vitales: nutrición, relación y reproducción. Otras funciones o derivadas de estas serian:
  • Irritabilidad: es la capacidad del protoplasma para responder a un estímulo. Es más notable en las neuronas y desaparece con la muerte celular.
  • Conductividad: es la generación de una onda de excitación (impulso eléctrico) a toda la célula a partir del punto de estimulación. Esta y la irritabilidad son las propiedades fisiológicas más importantes de las neuronas.
  • Contractilidad: es la capacidad de una célula para cambiar de forma, generalmente por acortamiento. Está muy desarrollada en las células musculares.
  • Absorción: es la capacidad de las células para captar sustancias del medio.
  • Secreción: es el proceso por medio del cual la célula expulsa materiales útiles como una enzima digestiva o una hormona.
  • Excreción: es la eliminación de los productos de desecho del metabolismo celular.

Tamaño, forma y función de las células

  • Tamaño: Las mayoría de las células son microscópicas, es decir, no son observables a simple vista sino al microscopio. A pesar de ser muy pequeñas (un milímetro cúbico de sangre puede contener unos cinco millones de células), el tamaño de las células es extremadamente variable. Existen bacterias con 1 y 2 micras de longitud. Las células humanas son muy variables: hematíes de 7 micras, hepatocitos con 20 micras, espermatozoides de 53 micras y óvulos de 150 micras. En las células vegetales los granos de polen pueden llegar a medir de 200 a 300 micras y algunos huevos de aves pueden alcanzar entre 1 (codorniz) y 7 centímetros (avestruz) de diámetro. Para la viabilidad de la célula y su correcto funcionamiento siempre se debe tener en cuenta la relación superficie-volumen. Puede aumentar considerablemente el volumen de la célula y no así su superficie de intercambio de membrana lo que dificultaría el nivel y regulación de los intercambios de sustancias vitales para la célula. También es importante la relación entre volumen citoplasmático y volumen nuclear. El mismo número de cromosomas no puede controlar un aumento de volumen desproporcionado, puesto que no regularía ni controlaría adecuadamente las funciones de toda la célula.
  • Forma y función: Las células presentan una gran variabilidad de formas, e incluso, algunas no ofrecen una forma fija. Pueden ser: fusiformes (forma de huso), estrelladas, prismáticas, aplanadas, elípticas, globosas o redondeadas, etc. Algunas tienen una pared rígida y otras no, lo que les permite deformar la membrana y emitir prolongaciones citoplasmáticas (pseudópodos) para desplazarse o conseguir alimento. Hay células libres que no muestran esas estructuras de desplazamiento pero poseen cilios o flagelos que son estructuras derivadas de un orgánulo celular (centriolo) que dota a estas células de movimiento. La función que realice la célula determina su forma, por lo que encontramos diferentes tipos de células:
  1. Células contráctiles que suelen ser alargadas, como las células musculares.
  2. Células con finas prolongaciones, como las neuronas que transmiten el impulso nervioso.
  3. Células con microvellosidades o con pliegues, como las del intestino para ampliar la superficie de contacto y de intercambio de sustancias.
  4. Células cúbicas, prismáticas o aplanadas como las epiteliales que recubren superficies como las losas de un pavimento.